Abstract
With the advances of information technologies, today's building automation systems (BASs) are capable of managing building operational performance in an efficient and convenient way. Meanwhile, the amount of real-time monitoring and control data in BASs grows continually in the building lifecycle, which stimulates an intense demand for powerful big data analysis tools in BASs. Existing big data analytics adopted in the building automation industry focus on mining cross-sectional relationships, whereas the temporal relationships, i.e., the relationships over time, are usually overlooked. However, building operations are typically dynamic and BAS data are essentially multivariate time series data. This paper presents a time series data mining methodology for temporal knowledge discovery in big BAS data. A number of time series data mining techniques are explored and carefully assembled, including the Symbolic Aggregate approXimation (SAX), motif discovery, and temporal association rule mining. This study also develops two methods for the efficient post-processing of knowledge discovered. The methodology has been applied to analyze the BAS data retrieved from a real building. The temporal knowledge discovered is valuable to identify dynamics, patterns and anomalies in building operations, derive temporal association rules within and between subsystems, assess building system performance and spot opportunities in energy conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.