Abstract

As a direct extension of the asymptotic spatial homogenization method we develop a temporal homogenization scheme for a class of homogeneous solids with an intrinsic time scale significantly longer than a period of prescribed loading. Two rate-dependent material models, the Maxwell viscoelastic model and the power-law viscoplastic model, are studied as an illustrative examples. Double scale asymptotic analysis in time domain is utilized to obtain a sequence of initial-boundary value problems with various orders of temporal scaling parameter. It is shown that various order initial-boundary value problems can be further decomposed into: (i) the global initial-boundary value problem with smooth loading for the entire loading history, and (ii) the local initial-boundary value problem with the remaining (oscillatory) portion of loading for a single load period. Large time increments can be used for integrating the global problem due to smooth loading, whereas the integration of the local initial-boundary value problem requires a significantly smaller time step, but only locally in a single load period. The present temporal homogenization approach has been found to be in good agreement with a closed-form analytical solution for one-dimensional case and with a numerical solution in multidimensional case obtained by using a sufficiently small time step required to resolve the load oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.