Abstract

Many patients with anterior cruciate ligament (ACL) injuries have persistent quadriceps muscle atrophy, even after considerable time in rehabilitation. Understanding the factors that regulate muscle mass, and the time course of atrophic events, is important for identifying therapeutic interventions. With a noninvasive animal model of ACL injury, a longitudinal study was performed to elucidate key parameters underlying quadriceps muscle atrophy. Male Long-Evans rats were euthanized at 6, 12, 24, or 48 h or 1, 2, or 4 wk after ACL injury that was induced via tibial compression overload; controls were not injured. Vastus lateralis muscle size was determined by wet weight and fiber cross-sectional area (CSA). Evidence of disrupted neuromuscular communication was assessed via the expression of neural cell adhesion molecule (NCAM) and genes associated with denervation and neuromuscular junction instability. Abundance of muscle RING-finger protein-1 (MuRF-1), muscle atrophy F-box (MAFbx), and 45 s pre-rRNA along with 20S proteasome activity were determined to investigate mechanisms related to muscle atrophy. Finally, muscle damage-related parameters were assessed by measuring IgG permeability, centronucleation, CD68 mRNA, and satellite cell abundance. When compared with controls, we observed a greater percentage of NCAM-positive fibers at 6 h postinjury, followed by higher MAFbx abundance 48 h postinjury, and higher 20S proteasome activity at 1 wk postinjury. A loss of muscle wet weight, smaller fiber CSA, and the elevated expression of run-related transcription factor 1 (Runx1) were also observed at the 1 wk postinjury timepoint relative to controls. There also were no differences observed in any damage markers. These results indicate that alterations in neuromuscular communication precede the upregulation of atrophic factors that regulate quadriceps muscle mass early after noninvasive ACL injury.NEW & NOTEWORTHY A novel preclinical model of ACL injury was used to establish that acute disruptions in neuromuscular communication precede atrophic events. These data help to establish the time course of muscle atrophy after ACL injury, suggesting that clinical care may benefit from the application of acute neurogenic interventions and early gait reloading strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.