Abstract

Activation of the Reperfusion Injury Salvage Kinase (RISK) pathway, which incorporates phosphatidylinositol-3-OH kinase (PI3K)-Akt/protein kinase B (PKB) and p44/42 mitogen-activated protein kinase (MAPK), underlies protection against ischemia-reperfusion (I/R) injury. The temporal nature of the activation of these RISK pathway components during reperfusion is, however, uncertain. We examined Akt and p44/42 phosphorylation in hearts subjected to ischemia and varying periods of reperfusion in the absence or presence of the putative cardioprotectant, apelin-13. Akt activity was also measured. Langendorff perfused C57Bl/6J mouse hearts were subjected to 35 min global ischemia followed by 0, 2.5, 5 or 10 min reperfusion with or without 1 microM apelin-13. Basal and apelin-induced phosphorylation of Akt (at both the threonine 308 and serine 473 phosphorylation sites) and p44/42 during the reperfusion phase was determined by Western blotting and Akt activity measured using an Enzyme-Linked ImmunoSorbent Assay (ELISA). Basal phosphorylation of both Akt and p44/42 increased progressively with time of reperfusion. Apelin enhanced Akt and p44/42 phosphorylation at all reperfusion time points. Akt activity did not change under basal conditions but was increased by apelin at 5 min (NS) and 10 min (p<0.05) reperfusion. We conclude that under basal conditions Akt and p44/42 phosphorylation increases with time of reperfusion but that this is not accompanied by increased kinase (Akt) activity. On application of a cardioprotectant, however, kinase phosphorylation and activity are enhanced suggesting that it is the combination of these two mechanisms that may underly the tissue preserving actions of such agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.