Abstract

The microbiome in artificial lake water and its impact on mercury (Hg) methylation remain largely unknown. We selected the largest artificial lake in southeastern china, Changshou Lake (CSL), which has high background levels of Hg, for our investigation of Hg transformation microorganisms. Five different sections of the water column of CSL were sampled during four seasons. The water samples were subjected to analysis of geochemical parameters, various Hg species and microbiome information. High concentrations of total mercury (THg) were detected in CSL in comparison with those found in natural lakes. Significant differences in microbial community structure and Hg species abundance existed among seasons. High dissolved methyl mercury (DMeHg) formation and high bacterial richness and diversity occurred in the fall. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus and many unclassified bacteria. Significant correlations were found between seasonal bacterial communities and Hg levels. Hg methylation was strongly linked to the abundance of Cyanobacteria. Methylators, including Syntrophus, Desulfovibrio and Desulfomonile species, were detected only in samples collected in the fall. The results of enzyme functional analyses revealed that many unknown types of bacteria could also be responsible for Hg transformation. This study was the first to investigate the impact of various Hg species on the microbiome of artificial lake water. The findings of this study illuminate the role of seasonal bacteria in Hg transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.