Abstract

Plant holocelluloses were prepared from softwood, gymnosperm, hardwood, and herbaceous species, and subjected to TEMPO-mediated oxidation using the TEMPO/NaBr/NaOCl and TEMPO/NaOCl/NaO2Cl systems in water at pH 10 and 6.8, respectively. Weight recovery ratios of the water-insoluble TEMPO-oxidized holocellulose (TOH) fractions and their carboxylate contents, sugar compositions, and X-ray diffraction patterns were measured. When the oxidation at pH 10 was used, the carboxylate content of the TOHs increased up to 1.4–1.7mmolg−1. The oxidation at pH 6.8 resulted in higher weight recovery ratios of TOHs and their lower carboxylate contents (0.8–1.2mmolg−1) than those prepared by the oxidation at pH 10. Hemicelluloses in plant holocelluloses are preferentially degraded to water-soluble fractions and removed from TOHs in the oxidation at pH 10. In contrast, the TEMPO-mediated oxidation at pH 6.8 provides hemicellulose-rich TOHs in high weight recovery ratios, although their nanofibrillation yields were low. All TEMPO-oxidized holocellulose nanofibrils (TOHNs) obtained by mechanical disintegration treatment of TOHs in water had the same average widths of ∼3nm, when measured by atomic force microscopy in water, which were consistent with those of TOHs determined from X-ray diffraction patterns. The number-average lengths of TOHNs were 500–600nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.