Abstract
Biomedical applications ranging from tissue engineering to drug delivery systems require versatile biomaterials based on the scalable and tunable production of biopolymer nanofibers under physiological conditions. These requirements can be successfully met by a novel extrusion process through nanoporous aluminum oxide templates, which is presented in this study. With this simple method we are able to control the nanofiber diameter by chosing the size of the nanopores and the concentration of the biopolymer feed solution. Nanofiber assembly into different hierarchical fiber arrangements can be achieved with a wide variety of different proteins ranging from the intracellular proteins actin, α-actinin and myosin to the extracellular matrix components collagen, fibronectin, fibrinogen, elastin and laminin. The extrusion of nanofibers can even be applied to the polysaccharides hyaluronan, chitosan and chondroitin sulphate. Moreover, blends of different proteins or proteins and polysaccharides can be extruded into composite nanofibers. With these features our template-assisted extrusion process will lead to new avenues in the development of nanofibrous biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.