Abstract

The direct quenching of low-carbon steel has been shown to be an effective way of producing ultra-high-strength, tough structural steels in the as-quenched state without tempering. However, in the present study, the influence of tempering at 500 °C has been studied in order to evaluate the possibilities of widening the range of strengths that can be produced from a single base composition. The chosen composition was 0.1C-0.2Si-1.1Mn-0.15Mo-0.03Ti-0.002B. In order to compare direct quenching with conventional quenching, two pre-quench austenite states were studied: a thermomechanically rolled, non-recrystallized, pancaked austenite grain structure and a recrystallized, equiaxed grain structure. Quenched and quenched-and-tempered microstructures were studied using FESEM and FESEM-EBSD. The as-quenched microstructures of the reheated and quenched and direct quenched specimens were fully martensitic and martensitic-bainitic, respectively. In both cases, tempering made the needle-shaped auto-tempered carbides of the as-quenched materials more spherical. In the case of the direct quenched (DQ) material, tempering led to a notable increase in the size of the grain boundary carbides. Prior austenite grain size and effective grain size after quenching were larger in the case of reheated and quenched material (RQ). Tempering had no effect on effective grain size. The crystallographic texture of the DQ material showed strong {112}<131> and {554}<225> components. The RQ material also contained the same components, but it also contained an intense {110}<110> and {011}<100> components. The effects of these microstructural changes on tensile, impact toughness and fracture toughness are described in part II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.