Abstract
The absorption of ultrashort (100 fs or shorter) bursts of x-ray free-electron laser (XFEL) radiation by thin (less than an attenuation length) solid carbon and iron target is modeled. Photon energies of several hundred eV to several keV and intensities of 1016 to 1018 W cm−2 are considered. We calculate carbon and iron temperatures at sufficient times after XFEL irradiation that local thermodynamic equilibrium has been established and electron-ion thermalization has occurred, assuming classical heat capacities. It is shown that there is an optimum photon energy for maximizing temperatures. Constant irradiation at 1018 W cm−2 for 100 fs with photons of 2 and 3 keV, for example, is predicted to result in a temperature of over 500 eV in solid density carbon and over 1 keV in solid density iron, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.