Abstract

The fatty acid compositions of half-seeds and whole seeds of the temperature-dependent high-stearic-acid sunflower (Helianthus annuus L.) mutant CAS-14 were unexpectedly different. We found that there is a longitudinal gradient starting from the embryo up to the end of the cotyledon. The stearic acid content varied from 9.7 to 34.6% in seeds produced in a growth chamber (39/24 degrees C; day/night), and from 14.0 to 34.4% in seeds produced in the field during the summer season (35-40 degrees C in daylight and 20-25 degrees C at night). The gradient occurs throughout seed formation, and is due to a spatial and non-temporal regulation of stearic acid desaturation. A similar temperature-regulated behaviour, but for oleic and linoleic acid contents, was found in normal sunflower seeds. Since the deposition of oil bodies was homogeneous during seed formation, seeds showed the gradient throughout their development. This non-homogeneous distribution must be due to differences in the enzymatic pathway of de-novo fatty acid desaturation along the seed, resembling a morphogen gradient. Other high-stearic-acid mutant lines, such as CAS-3, did not show any gradient. This is the first time that a gradient and an inheritable maternal control of the fatty acid composition have been found in oilseeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.