Abstract

Reversible martensitic phase transformations in a partially disordered Ni–Al alloy within the composition range from 60to65at.% of Ni are investigated using molecular dynamics simulation. During a complete temperature cycle a wide hysteresis in enthalpy, volume, and shape of the simulated crystals is observed. The temperature T0 of the phase transformation is found from the calculated free energy evolution. To investigate the atomic-scale development during the phase transformation a local order parameter is defined which is based on a combined method of Voronoy tessellation [J. Reine Angew. Math. 134, 198 (1908)] with common-neighbor analysis. This local order parameter allows us to get a detailed localized picture of nucleation and growth of the new phases. Both homogeneous formation of the new phase and heterogeneous nucleation are observed. The velocity of new phase growth front is estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.