Abstract

This paper investigates both theoretically and experimentally the dielectric charging effects of capacitive RF microelectromechanical system switches with silicon nitride as dielectric layer. Dielectric charging caused by charge injection under voltage stress was observed. The amphoteric nature of traps and its effect on the switch operation were confirmed under both positive and negative control voltages. It has been confirmed that charging is a complicated process, which can be better described through the stretched exponential relaxation. This mechanism is thermally activated with an activation energy being calculated from the temperature dependence of the capacitance transient response. The charging mechanism, which is responsible for the pull-out voltage and the device failure, is also responsible for the temperature-induced shift of the capacitance minimum bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.