Abstract

Molecular dynamics simulations of methane molecules inside the (15,15) carbon nanotube (CNT) are performed for the temperature range from 173 to 293 K and pressures up to 700 bar. The structural and dynamic properties of 1-site and 5-site models of methane molecules are reported. The atomic model of the molecules increases density of methane in the vicinity of the nanotube wall, and the decrease of temperature increases the molecular density. The 5-site molecules from the contact layer exhibit tripod orientation with respect to the CNT. The diffusion coefficients of molecular translations along the carbon nanotube and rotational motion increase with temperature, and both decrease with pressure. Temperature dependences of the coefficients are described by the Arrhenius equation. Relatively free rotations of the 5-site molecules reduce the activation energies of translational diffusion compared to the energies for the 1-site molecules. The CNT flexibility, introduced by the reactive empirical bond order pot...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.