Abstract
The nonlinear behavior of the Holling-Tanner predatory-prey differential equation system, employed by R.M. May to illustrate the apparent robustness of Kolmogorov’s Theorem when applied to such exploitation systems, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature-dependent mite interaction on fruit trees. The most significant result of this analysis is that there exists a temperature range wherein multiple stable states can occur, in direct violation of May’s interpretation of this system’s satisfaction of Kolmogorov’s Theorem: namely, that linear stability predictions have global consequences. In particular these stable states consist of a focus (spiral point) and a limit cycle separated from each other in the phase plane by an unstable limit cycle, all of which are associated with the single community equilibrium point of the system. The ecological implications of such metastability, hysteresis, and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system, and the biological control of mite populations are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.