Abstract
Environmental DNA (eDNA) preservation is crucial for biological monitoring using eDNA technology. The decay of eDNA over time in natural water bodies and the effects of temperature and ultraviolet (UV) radiation on the decay rate are largely unknown. In this study, the linear and exponential decay models were used to explore the relationship between residual eDNA content and decay time, respectively. It was found that the residual eDNA content treated with a higher temperature decreased by an average of 89.65% at the end of experiment, while those in the 4 °C treatment group remained stable. The higher decision coefficient (R2) of the exponential decay models indicated that they could better reflect the decay of eDNA over time than linear. The difference in the decay rates of the exponential modes was slight between the 20 °C (25.47%) and 20 °C + UV treatment groups (31.64%), but both were much higher than that of the 4 °C group (2.94%). The results suggest that water temperature significantly affected the decay rate of eDNA, while UV radiation had little effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.