Abstract

We investigated the effects of temperature on the carrier formation dynamics in a small-molecular blend film, 2,5-di-(2-ethylhexyl)-3,6-bis-(5′′-n-hexy-[2,2′,5′,2′′]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrolo-1,4-dione (SMDPPEH)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM). We spectroscopically determined the absolute numbers of donor () and acceptor () excitons per absorbed photon as functions of the delay time (t), in addition to the relative number of donor carries (). We found that the carrier formation dynamics is independent of temperature at 300 and 80 K: the carrier formation time (τrise = 0.4 ps) is much faster than the decay time (τdecay ≈ 2.5 ps) of donor excitons. The temperature independence strongly suggests that only excitons created near the donor–acceptor interface contribute to the carrier formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.