Abstract

We investigate here the effect of temperature on the diffusion of water and cations in the Wyoming-type montmorillonite clay. The considered cations are monovalent compensating ions, such as Li+, Na+, K+, Rb+ and Cs+ in one-, two- and three-hydration states. For this purpose, molecular dynamics simulations have been performed to obtain the dynamic behaviour regarding the interlayer ions and water molecules under a temperature range between 260 and 400 K. The diffusion coefficient of water and cations in different hydrated clays increases with temperature. The influence of temperature on the diffusion of water is much greater than that of cations in one-, two- or three-hydrated clay. The degree of hydration plays an important role on the diffusion behaviour of water and counterions. We found that the effect of temperature is negligible in weakly hydrated clay, whereas it became significant in highly hydrated one. Besides, the size and mass of cations’ hydrate also affect the diffusion behaviour of water and cations in the interlayer space of hydrated clay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.