Abstract

Stability of biogas production is highly dependent on the microbial community composition of the bioreactors. This composition is basically determined by the nature of biomass substrate and the physical–chemical parameters of the anaerobic digestion. Operational temperature is a major factor in the determination of the anaerobic degradation process. Next-generation sequencing (NGS)-based metagenomic approach was used to monitor the organization and operation of the microbial community throughout an experiment where mesophilic reactors (37°C) were gradually switched to thermophilic (55°C) operation. Temperature adaptation resulted in a clearly thermophilic community having a generally decreased complexity compared to the mesophilic system. A temporary destabilization of the system was observed, indicating a lag phase in the community development in response to temperature stress. Increased role of hydrogenotrophic methanogens under thermophilic conditions was shown, as well as considerably elevated levels of Fe-hydrogenases and hydrogen producer bacteria were observed in the thermophilic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.