Abstract

The temperature dependence of electronic absorption is reported for quantum-sized monolayer-protected gold clusters (MPCs). The investigations were carried out on Au25L18 (L = SC6H13) and Au38L24 (L = SC2H4Ph) clusters, which show discrete absorption bands in the visible and near-infrared region at room temperature and with a decrease in temperature: (i) the optical absorption peaks become sharper with the appearance of vibronic structure, (ii) the absorption maximum is shifted to higher energies, and (iii) the oscillator strengths of transitions increased. Smaller temperature dependence of absorption is observed for plasmonic gold nanoparticles. The results of the band gap shifts are analyzed by incorporating electron–phonon interactions using the O’Donnell–Chen model. An average phonon energy of ∼400 cm–1 is determined, and is attributed to the phonons of semiring gold. The unique property of decreasing oscillator strength with increasing temperature is modeled in the Debye–Waller equation, which relates oscillator strength to the exciton–phonon interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.