Abstract
The thermal stability of a protein is an important concern for its practical application in food processing industries. In this study, we have carried out classical molecular dynamics simulations to systematically investigate the effect of NADES (natural deep eutectic solvent) on the stabilization of the protein β-Lactoglobulin (BLG) at different temperatures. This study sheds light on the very aspects of NADES composed of betaine and sorbitol on the stability of the protein. NADES provides better stability to the protein up to a temperature of 400 K than in water. It is observed that the protein starts to unfold above temperature 400 K in spite of the presence of NADES which is quiet evident from the root mean square deviation (RMSD) and radius of gyration (Rg) plots. The decreasing average solvent accessible surface area (SASA) values and increasing intra-protein hydrogen bonds indicate better stability of the protein in NADES medium than in water at temperatures 300 K and 400 K. At high temperatures viz. 450 K and 500 K the number and distribution of solvent species (betaine and sorbitol) around the protein surface show an increment that are evident from the calculations of solvation shell, radial and spatial distribution functions. Increased number of betaine molecules that interact with the protein through electrostatic interaction may lead to destabilization of the protein at these temperatures. This study suggests that NADES could be used as an ideal medium for thermal stability of the protein BLG up to a temperature of 400 K. Beyond this temperature, NADES used for this study fails to exert stabilization effect on the protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.