Abstract

A nonvolatile memory based on an organic thin-film transistor (OTFT) with a biopolymer of DNA-cetyltrimethylammonium chloride (DNA-CTMA) acting as the gate dielectric layer was fabricated. The transfer characteristics of the device prepared by both DNA alone and DNA-CTMA showed a very large and stable hysteresis. In order to analyze the memory mechanism, the temperature dependence of the transfer characteristics, electric conductivity, differential scanning calorimetry (DSC), thermally stimulated depolarization current (TSDC) as well as the dielectric property of the DNA-CTMA film have been investigated. As a result, the quasi-ferroelectric polarization originating from the alignment of the intrinsic dipole moment inside the DNA-CTMA complex was identified as the main source of hysteresis in the lower temperature region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.