Abstract
Temperature-dependent piezoelectric-field characteristics of GaInN/GaN blue quantum wells are experimentally investigated between 100 and 300 K. The results show that the magnitude of the piezoelectric field increases with decreasing temperature with a slope of 1.08 kV cm−1 K−1 due to the increase in a mismatch between thermal expansion coefficients. To understand the impact of temperature-dependent piezoelectric field on the device performance, the external quantum efficiencies (EQEs) of a blue light-emitting diode are measured in the same temperature range. More severe EQE droops are observed at lower temperatures, which can be attributed to the increase in carrier overflow/spill-over to the p-clad layer enhanced by the stronger piezoelectric fields. The larger blueshifts in mean photon energy are simultaneously observed at lower temperatures, which also confirms the stronger piezoelectric fields at lower temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.