Abstract

The temperature dependence of the bandgap of perovskite semiconductor compound CsSnI3 is determined by measuring excitonic emission at low photoexcitation in a temperature range from 9 to 300 K. The bandgap increases linearly as the lattice temperature increases with a linear coefficient of 0.35 meV K−1. This behavior is distinctly different than that in most of tetrahedral semiconductors. First-principles simulation is employed to predict the bandgap change with the rigid change of lattice parameters under a quasi-harmonic approximation. It is justified that the thermal contribution dominates to the bandgap variation with temperature, while the direct contribution of electron-phonon interaction is conjectured to be negligible likely due to the unusual large electron effective mass for this material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.