Abstract
Experimental analysis of the temperature-dependent I– V characteristics of various SCR (Silicon-Controlled Rectifier) electrostatic discharges (ESD) protection circuits have been carried out. These circuits include diode-chain-triggering SCR (DCTSCR), low-voltage zener diode trigger SCR (ZDSCR), low-voltage trigger SCR (LVTSCR) and gate-coupled low-voltage trigger SCR (GCSCR) circuits. The ZDSCR uses the zener breakdown mechanism of a reverse-biased p +–n + diode as a trigger mechanism, the DCTSCR uses the current flowing through forward-biased diode chain as a trigger mechanism, the LVTSCR uses the grounded-gate MOSFET breakdown current as the trigger mechanism and the steady-state I– V characteristics of GCSCR also uses the avalanche breakdown as a triggering mechanism. The trigger voltage can decrease or increase with increasing temperature depending upon the triggering mechanism used in the circuit, however the holding voltages of these SCRs decrease with increasing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.