Abstract

Abstract By the use of reduced variables, the temperature dependence and frequency dependence of dynamic mechanical properties of rubberlike materials can be interrelated without any arbitrary assumptions about the functional form of either The definitions of the reduced variables are based on some simple assumptions regarding the nature of relaxation processes. The real part of the reduced dynamic rigidity, plotted against the reduced frequency, gives a single composite curve for data over wide ranges of frequency and temperature; this is true also for the imaginary part of the rigidity or the dynamic viscosity. The real and imaginary parts of the rigidity, although independent measurements, are interrelated through the distribution function of relaxation times, and this relation provides a check on experimental results. First and second approximation methods of calculating the distribution function from dynamic data are given. The use of the distribution function to predict various types of time-dependent mechanical behavior is illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.