Abstract

Based on the distribution of activation energies around the experimental mean and averaging of rate constants we propose a theoretical scheme to examine the temperature dependence and temperature compensation of time periods of chemical oscillations. The critical finite width of the distribution is characteristic of endogeneous oscillations for compensating kinetics as observed in circadian oscillations, while the vanishing width corresponds to Arrhenius temperature dependent kinetics of non-endogeneous chemical oscillation in Belousov–Zhabotinskii reaction in a CSTR or glycolysis in cell-free yeast extracts. Our theoretical analysis is corroborated with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.