Abstract

Temperature-dependent uptake and release of small molecules within porous silica nanoparticles has been achieved by treatment of preformed, thiol-functionalized micro-to-mesoporous silica nanoparticles (MSN) with pyridyl disulfide-terminated poly(N-isopropylacrylamide) (PNIPAM−S−S−Py). The resulting nanoparticle−polymer composites show uptake and release of fluorescein at room temperature (below the lower critical solution temperature, LCST, of the polymer) and a low level of leakage at 38 °C (above LCST, <2% after 2 h). The data are consistent with a mode of action in which fluorescein diffusion occurs readily when the polymer is in the random coil conformation but is significantly retarded when the polymer adopts the globule conformation. This mode of action is opposite to that observed for systems in which the PNIPAM is grown from the porous silica surface or co-condensed with silica and is accompanied by a greater than 10-fold improvement in fluorescein retention in the “pore-closed” conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.