Abstract

New and improved methods to remove toxic mercury from contaminated waters and waste streams are highly sought after. Recently, it was shown that electrochemical alloy formation of PtHg4 on a platinum surface with mercury ions from solution can be utilized for decontamination, with several advantages over conventional techniques. Herein, we examine the alloy formation process in more detail by mercury concentration measurements using inductively coupled plasma mass spectrometry in batch measurements as well as electrochemical quartz crystal microbalance analysis both in batch and in flowing water with initial mercury concentrations ranging from 0.25 to 75000 µg L−1 Hg2+. Results show that mercury is effectively removed from all solutions and the rate of alloy formation is constant over time, as well as for very thick layers of PtHg4. The apparent activation energy for the electrochemical alloy formation was determined to be 0.29 eV, with a reaction order in mercury ion concentration around 0.8. The obtained results give new insights that are vital in the assessment and further development of electrochemical alloy formation as a method for large scale mercury decontamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.