Abstract
Comparisons of the photosynthetic responses to light and temperature between related cultivars are important to understand how well matched they are to the climate where they are grown. Photosynthetic light responses at a range of leaf temperatures and two CO2 concentrations were measured on leaves of two grapevine cultivars (Vitis vinifera L.) Chardonnay and Merlot vines growing in field conditions. The objective was to assess the interaction between photon flux density (PFD), leaf temperature and CO2 on photosynthesis and to compare the two cultivars. Merlot leaves maintained higher light-saturated rates of photosynthesis at all leaf temperatures compared with the Chardonnay leaves. At low temperatures, a reduced photon yield offset with a high stomatal conductance accounted for the low rates of the Chardonnay leaves. At moderate to high temperatures, photon yields, PFDs at light saturation and stomatal conductances did not account for differences between Merlot and Chardonnay leaves. At elevated CO2 (800 μmol mol−1) concentrations, the differences in photosynthetic performance between the cultivars were enhanced, with 30% higher light saturated rates for Merlot compared with Chardonnay leaves. Merlot berries accumulated more sugar, consistent with published data. These results demonstrate Chardonnay, unlike Merlot, appeared to be poorly matched to the hot climate. However, considering the current market and political trends, low alcoholic wines (and, thus, low sugar grapes) should be preferred. Especially in hot climates, it is always hard to obtain such kind of wines and, thus, the most interesting agronomical challenge, especially for Chardonnay vines could be interpreted in an opposite way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.