Abstract

AbstractA temperature accelerated life test on commercial concentrator lattice‐matched GaInP/GaInAs/Ge triple‐junction solar cells has been carried out. The acceleration of the aging has been accomplished by subjecting the solar cells at temperatures markedly higher than the nominal working temperature inside a concentrator, and the nominal photo‐current condition (820 X) has been emulated by injecting current in darkness. Three tests at different temperatures have been carried out. The failure distributions across the three test temperatures have been fitted to an Arrhenius–Weibull model. An Arrhenius activation energy of 1.59 eV was determined from the fit. The reliability functions and parameters of these solar cells at two nominal working conditions (80 and 100 °C) have been obtained. In both cases, the instantaneous failure rate function monotonically increases, that is, the failures are of the wear‐out kind. We have also observed that the reliability data are very sensitive to the nominal temperature condition. In fact, at a nominal working condition of 820 X and 80 °C, assuming that the concentration module works 5 h per day, the warranty time obtained for a failure population of 5% has been 113 years. However, for a nominal working condition of 820 X and 100 °C, the warranty time obtained for a failure population of 5% has been 7 years. Therefore, in order to offer a long‐term warranty, the working temperature could be a key factor in the design of the concentration photovoltaic systems. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.