Abstract

Telomere length variation has been associated with increased risk of several types of tumors, and telomere shortening, with genetic anticipation in a number of genetic diseases including hereditary cancer syndromes. No conclusive studies have been performed for Lynch syndrome, a hereditary colorectal cancer syndrome caused by germline mutations in the DNA mismatch repair genes. Here we evaluate telomere length in Lynch syndrome, both as a cancer risk factor and as a mechanism associated with anticipation in the age of cancer onset observed in successive generations of Lynch syndrome families. Leukocyte telomere length was measured in 244 mismatch repair gene mutation carriers from 96 Lynch syndrome families and in 234 controls using a monochrome multiplex quantitative PCR method. Cancer-affected mutation carriers showed significantly shorter telomeres than cancer-free mutation carriers. In addition, cancer-affected carriers showed the most pronounced shortening of telomere length with age, compared with unaffected carriers. The anticipation in the age of cancer onset observed in successive generations was not associated with telomere shortening, although, interestingly, all mother-son pairs showed telomere shortening. In conclusion, cancer-affected mismatch repair gene mutation carriers have distinct telomere-length pattern and dynamics. However, anticipation in the age of onset is not explained by telomere shortening. Pending further study, our findings suggest that telomere attrition might explain the previously reported dependence of cancer risk on the parent-of-origin of mismatch repair gene mutations.

Highlights

  • Lynch syndrome (LS) (MIM 120435) is the most common hereditary syndrome that predisposes to colorectal cancer (CRC) and other extracolonic tumors, accounting for 2%–5% of the total burden of CRC

  • The negative slope of the linear regression line that best fit the relative telomere length (RTL) data for the controls indicated that telomere length shortened with age (Pearson’s correlation coefficient r = 20.187; p = 0.004); the same was observed for the mismatch repair (MMR) gene mutation carriers (r = 20.297; p = 2.3761026)

  • In this study we found that cancer-affected MMR gene mutation carriers have shorter telomeres and faster telomere attrition rates than unaffected mutation carriers and controls, and that telomere shortening is not associated with anticipation in the age of cancer onset in successive generations

Read more

Summary

Introduction

Lynch syndrome (LS) (MIM 120435) is the most common hereditary syndrome that predisposes to colorectal cancer (CRC) and other extracolonic tumors, accounting for 2%–5% of the total burden of CRC. Telomere shortening has gained considerable interest as a potential biomarker of cancer risk and as a mechanism associated with genetic anticipation. We have recently shown that a common genetic variant located in the telomerase gene (hTERT; MIM 187270) increases cancer risk in LS patients at early ages, and that this SNP is associated with shortened telomere length in cancer-affected MMR gene mutation carriers [11]. Given the proposed role of telomere shortening in early processes of carcinogenesis, attention has been directed to its potential role as a cancer risk biomarker. With this purpose, a number of retrospective and prospective observational studies have been conducted, results are inconsistent among studies and tumor types [14,15,16]. With respect to CRC, despite the conflicting results obtained in retrospective studies, prospective studied have not found a convincing association between leukocyte telomere length and CRC risk [16,17,18]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.