Abstract
ABSTRACTNew biodegradable biomaterials are attracting a huge interest as alternative to conventional polymers used in the field of drug delivery. In this work, we evaluated the ability of new biocompatible and biodegradable polyesters to form nanoparticles (NPs), and tested their potential carrier properties for controlled release of hydrophilic or lipophilic compounds. Multiblock copolymers derived from poly(R‐3‐hydroxybutyrate) and poly(1,4‐butylene adipate) by microwave‐assisted transesterification, having different chemical and physicochemical properties were tested. Nanoprecipitation was applied to obtain NPs with a homogenous size distribution. Oil Red O and calcein were encapsulated as lipophilic and hydrophilic probes, evaluating NP mean size and size polydispersity, surface charge, encapsulation efficiency, and release profile. The release curves were fitted into mathematical models to investigate the release mechanism. NPs stability appeared to be strictly related to storage conditions. The NPs were also successfully autoclaved and their mucoadhesive behavior was assessed by a “mucin‐particle method.” © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47233.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.