Abstract

Graphene oxide (GO) is an amphiphilic, water dispersible, chemical derivative of graphene. Widely used as a pathway to obtain graphene, it also has a number of interesting applications by itself due to its ability to form covalently and non-covalently bonded organic–inorganic hybrids and polymer composites. Thus, GO-based composites are used in numerous applications in membrane and coating technologies. It is important that due to the presence of functional acidic groups, GO possesses tunable physicochemical properties like a negatively charged polyelectrolyte and can be used as stimuli responsive membranes, membranes that can interact with environment and switch their properties on demand. Thus, ionic/molecular separation, water purification, selective sensing, and stimuli responsive properties have already been demonstrated in the laboratory. Good mechanical strength and conductivity (in its partially reduced form) make it attractive for the construction of the membranes for energy devices and sensors. However, concentration and distribution of the functional groups on GO molecules is difficult to control. It makes GO materials difficult to standardize, produce, and apply in industry. To this end, it is important to highlight recent achievement in the synthesis of GO as well as in design of GO-based energy devices, corrosion inhibiting coatings, and biomedical devices with improved working performances to evoke interest on mass production of GO with improved formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.