Abstract

Nowadays, applications for the Internet of Things (IoT) have been introduced in different fields of medicine to provide more efficient medical services to the patients. A systematic mapping study was conducted to answer ten research questions with the purposes of identifying and classifying the present medical IoT technological features as well as recognizing the opportunities for future developments. We reviewed how cloud, wearable technologies, wireless communication technologies, messaging protocols, security methods, development boards, microcontrollers, mobile/IoT operating systems, and programming languages have been engaged in medical IoT. Based on specific inclusion/exclusion criteria, 89 papers, published between 2000 and 2018, were screened and selected. It was found that IoT studies, with a publication rise between 2015 and 2018, predominantly dealt with the following IoT features: (a) wearable sensor types of chiefly accelerometer and ECG placed on 16 different body parts, especially the wrist (33%) and the chest (21%) or implanted on the bone; (b) wireless communication technologies of Bluetooth, cellular networks, and Wi-Fi; (c) messaging protocols of mostly MQTT; (d) utilizing cloud for both storing and analyzing data; (e) the security methods of encryption, authentication, watermark, and error control; (f) the microcontrollers belonging to Atmel ATmega and ARM Cortex-M3 families; (g) Android as the commonly used mobile operating system and TinyOS and ContikiOS as the commonly used IoT operating systems; (h) Arduino and Raspberry Pi development boards; and finally (i) MATLAB as the most frequently employed programming language in validation research. The identified gaps/opportunities for future exploration are, namely, employment of fog/edge computing in storage and processing big data, the overlooked efficient features of CoAP messaging protocol, the unnoticed advantages of AVR Xmega and Cortex-M microcontroller families, employment of the programming languages of Python for its significant capabilities in evaluation and validation research, development of the applications being supported by the mobile/IoT operating systems in order to provide connection possibility among all IoT devices in medicine, exploiting wireless communication technologies such as BLE, ZigBee, 6LoWPAN, NFC, and 5G to reduce power consumption and costs, and finally uncovering the security methods, usually used in IoT applications, in order to make other applications more trustworthy.

Highlights

  • Connected “things” to the Internet have increased exponentially in recent years [1, 2]

  • We suggest that incorporation of the security method used in the description of any Internet of Things (IoT) development be inevitable

  • (4) Apart from TinyOS and ContikiOS—two major IoT operating systems for memory-constrained and low-power wireless IoT devices—that have been underused in medicine, other operating systems, such as RIOT, MbedOS, Brillo, and Zephyr, are not yet employed in medical IoT applications

Read more

Summary

Introduction

Connected “things” to the Internet have increased exponentially in recent years [1, 2]. The devices can be identified and controlled via a new Internet called IoT. This new Internet integrates physical and virtual world things to improve the quality of human life and provides better services [3,4,5]. Physical things, such as devices and tools, have abilities of sensing, actuating, and interconnecting while virtual things, such as multimedia content and software applications, can Definition of research questions. Collection of studies Data extraction Mapping results. Systematic mapping report be stored, processed, and accessed [6]. Thanks to widely available technologies such as communication technologies and smart portable devices, IoT has become one of the hottest topics in all areas [8], in healthcare, which is estimated to engage 40% of IoT devices by 2020 [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.