Abstract

The use of geopolymer-based concrete has many advantages over conventional cement concrete. Geopolymer, which derives its basic ingredients from industrial waste, has considerable opportunity to dump the industrial waste and reduce the carbon dioxide emissions that could be emitted during cement manufacturing. Geopolymer concrete is potentially suitable for structural engineering applications; however, its unskilled manufacturing leads to several deficits such as cracking, weak mechanical characteristics, and reduced serviceability of the geopolymer structures. Nanomaterials are now being applied and developed in the realm of materials, where they have shown strong filling effects on composite materials that significantly enhance the integrity of composite materials. Research into how nanomaterials might enhance the performance of geopolymer concrete (GPC) in engineering applications is gaining a lot of attention. The past literature revealed that the GPC characteristics can be enhanced by adding nanoparticles; thereby increasing its engineering applications in practical usage. This study highlighted the primary technical issues of nanomaterial-or modified GPC during the last decade in light of widespread fascination with the subject and the need to provide an up-to-date and comprehensive study for future related research. This review study has covered the most up-to-date information and data on geopolymer concrete, including its methods of dispersion, characterization methodologies, interface mechanisms of nanoparticles, and mechanical characteristics. Concurrently, the limitations and major issues associated with using nanomaterials to modify GPC in practical applications are thoroughly examined. Finally, the future potential and difficulties of this area of study are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.