Abstract
The extinction coefficients of polydispersed gold nanoparticles up to σ = 360 nm were computed via exact solution of Mie theory. A narrow extinction peak around 520 nm occurs for mean particle sizes <d> within dipole approximation limit. Spectral characteristics for extinction coefficient computed based on increasing mean particle sizes, degree of polydispersity, composition ratio of bimodal size distributions and changes in dispersant temperature are compared. As mean particle sizes increases, the plasmon resonance peak red-shifts and broadens skewing towards infrared. Increasing polydispersity on mean particle diameter beyond dipole approximation limit decreases peak extinction coefficient values. Increasing temperature from ambient to boiling changes the peak extinction coefficient intensity value by an order of 10^-13 while resonance wavelength remains unchanged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Malaysian Journal of Fundamental and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.