Abstract

To characterize the dosimetric features and limitations of the dynamic beam flattening (DBF) on the Halcyon 2.0 linear accelerator (Varian Medical Systems). A predefined multi-leaf collimator (MLC) sequence was introduced and used to flatten the 6MV flattening filter free (FFF) beam on the Halcyon 2.0. Dosimetric characterizations of the flattened beams, including beam flatness, symmetry, percent depth dose (PDD), output factor and MU linearity, were investigated. Flatness and symmetry were obtained from profile measurements with both radiographic films (EDR2) and a two dimensional ion-chamber array (IC Profiler, Sun Nuclear Corporation). MU linearity, output factors, and PDDs were measured in a water tank with a CC13 ion chamber (Scanditronix Wellhöfer, Nuremburg, Germany). In addition, the effect of the DBF sequence on 3D plan quality was evaluated by creating DBF plans for a 4-field box rectum and an AP/PA spine plan. Patient specific QA was performed on these plans. At 100cm SSD and 10cm depth, a flatness of <3% was observed on both transversal and radial profiles for all square field sizes ≥10cm with DBF. For both larger and smaller field sizes the flatness showed a tendency to increase as the fields got bigger or smaller, respectively. Similar trends in flatness were observed at all depths measured. All measured output factors for square field sizes ≥5cm were within 1% of the TPS prediction. Linearity was ≤2.02% for all measurements. For both treatment sites, the MD judged the plans created for the Halcyon without the use of DBF not to be clinically acceptable, however considered both the TrueBeam plan and the Halcyon plan with the DBF sequence to be clinically acceptable. The DBF sequence on the Halcyon and its characteristics were investigated. The analysis indicates that the DBF sequence can be used on the Halcyon to generate clinically acceptable 3D treatment plans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.