Abstract

For obtaining sideband-free spectra of high-Z spin-1/2 nuclei with large (>1000 ppm) chemical-shift anisotropies and broad isotropic-shift dispersion, we recently identified Gan's modified five-pulse magic-angle turning (MAT) experiment as the best available broadband pulse sequence, and adapted it to fast magic-angle spinning. Here, we discuss technical aspects such as pulse timings that compensate for off-resonance effects and are suitable for large CSAs over a range of 1.8 γB 1; methods to minimize the duration of z-periods by cyclic decrementation; shearing without digitization artifacts, by sharing between channels (points); and maximizing the sensitivity by echo-matched full-Gaussian filtering. The method is demonstrated on a model sample of mixed amino acids and its large bandwidth is highlighted by comparison with the multiple- π-pulse PASS technique. Applications to various tellurides are shown; these include GeTe, Sb 2Te 3 and Ag 0.53Pb 18Sb 1.2Te 20, with spectra spanning up to 190 kHz, at 22 kHz MAS. We have also determined the 125Te chemical shift anisotropies from the intensities of the spinning sidebands resolved by isotropic-shift separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.