Abstract

To investigate the effects of (99)Tc-MDP, a decay product of (99m)Tc-MDP, on the development of choroidal neovascularization (CNV), together with its underlying mechanisms. C57BL/6J mice were used to induce CNV by laser photocoagulation. (99)Tc-MDP at the doses of 0.5 × 10(-1), 1 × 10(-1), and 2 × 10(-1) μg/kg or the same volume of PBS was intraperitoneally injected daily after photocoagulation until the end of the experiment. Seven days after laser injury, mice were perfused with fluorescein-labeled dextran, and areas of CNV were measured. Numbers of infiltrating macrophages, protein levels of VEGF, and inflammation-related molecules including intercellular adhesion molecule (ICAM)-1, tumor necrosis factor (TNF)-α, and matrix metalloproteinases (MMPs) in the RPE-choroid complex were detected 3 days after laser photocoagulation. Effects of (99)Tc-MDP on VEGF-induced endothelial cell migration and tube formation were also studied. Toxicity of (99)Tc-MDP was evaluated in vivo and in vitro. Areas of CNV were significantly suppressed by (99)Tc-MDP treatment without toxicity to the retina compared with PBS treatment in a dose-dependent manner: (99)Tc-MDP treatment of 0.5 × 10(-1) μg/kg (5698.60 ± 1037.70 μm(2)), 1 × 10(-1) μg/kg (3678.34 ± 1328.18 μm(2)), and 2 × 10(-1) μg/kg (2365.78 ± 923.80 μm(2)) suppressed the development of CNV by 36.12%, 58.76%, and 73.48%, respectively, compared with that in the PBS treatment group (8920.36 ± 1097.29 μm(2); P < 0.001). (99)Tc-MDP treatment led to significant inhibition of macrophages infiltrating to CNV together with downregulated protein expressions of VEGF, ICAM-1, TNF-α, and MMP-2. (99)Tc-MDP also showed an inhibitive effect on cell proliferation and VEGF-induced migration and capillary-like tube formation of endothelial cells. Anti-inflammatory treatment with (99)Tc-MDP has therapeutic potential for CNV-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.