Abstract

Anyone who has enjoyed a glass of wine has undoubtedly noticed the regular pattern of liquid beads that fall along the inside of the glass, or ‘tears of wine.’ The phenomenon is the result of a flow against gravity along the liquid film on the glass, which is induced by an interfacial tension gradient. It is generally accepted that the interfacial tension gradient is due to a composition gradient resulting from the evaporation of ethanol. We re-examine the tears of wine phenomenon and investigate the importance of thermal effects, which previously have been ignored. Using a novel experiment and simple model we find that evaporative cooling contributes significantly to the flow responsible for wine tears, and that this phenomenon occurs primarily because of the thermodynamic behavior of ethanol-water mixtures. Also, the regular pattern of tear formation is identified as a well-known hydrodynamic instability.

Highlights

  • Anyone who has enjoyed a glass of wine has undoubtedly noticed the regular pattern of liquid beads that fall along the inside of the glass, or ‘tears of wine.’ The phenomenon is the result of a flow against gravity along the liquid film on the glass, which is induced by an interfacial tension gradient

  • Our analysis shows that evaporative cooling contributes significantly to the flow responsible for wine tears, and that this phenomenon occurs in wine and other spirits because of the thermodynamic behavior of ethanol-water mixtures

  • The tears of wine phenomenon is the result of a delicate interplay between interfacial and bulk hydrodynamics

Read more

Summary

Introduction

Anyone who has enjoyed a glass of wine has undoubtedly noticed the regular pattern of liquid beads that fall along the inside of the glass, or ‘tears of wine.’ The phenomenon is the result of a flow against gravity along the liquid film on the glass, which is induced by an interfacial tension gradient. Much of this work has focused on the origin of the Marangoni flow, shape of the liquid film, and the instabilities leading to the formation of tears. It is generally accepted that the flow leading to wine tears is due to a composition gradient that results from the evaporation of ethanol, which has a smaller interfacial tension than water.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.