Abstract
In sequential machine teaching, a teacher’s objective is to provide the optimal sequence of inputs to sequential learners in order to guide them towards the best model. However, this teaching objective considers a restricted class of learners with fixed inductive biases. In this paper, we extend the machine teaching framework to learners that can improve their inductive biases, represented as latent internal states, in order to generalize to new datasets. We introduce a novel framework in which learners’ inductive biases may change with the teaching interaction, which affects the learning performance in future tasks. In order to teach such learners, we propose a multi-objective control approach that takes the future performance of the learner after teaching into account. This framework provides tools for modelling learners with internal states, humans and meta-learning algorithms alike. Furthermore, we distinguish manipulative teaching, which can be done by effectively hiding data and also used for indoctrination, from teaching to learn which aims to help the learner become better at learning from new datasets in the absence of a teacher. Our empirical results demonstrate that our framework is able to reduce the number of required tasks for online meta-learning, and increases independent learning performance of simulated human users in future tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.