Abstract

Dynamic combinatorial chemistry is a method widely used for generating responsive libraries of compounds, with applications ranging from chemical biology to materials science. It relies on dynamic covalent bonds that are able to form in a reversible manner in mild conditions, and therefore requires the discovery of new types of these bonds in order to progress. Amides, due to their high stability, have been scarcely used in this field and typically require an external catalyst or harsh conditions for exchange. Compounds able to undergo uncatalysed transamidation at room temperature are still rare exceptions. In this work, we describe reversible amide formation and transamidation in a class of compounds known as maleamic acids. Due to the presence of a carboxylic acid in β‐position, these compounds are in equilibrium with their anhydride and amine precursors in organic solvents at room temperature. First, we show that this equilibrium is responsive to external stimuli: by alternating the additions of a Brønsted acid and a base, we can switch between amide and anhydride several times without side‐reactions. Next, we prove that this equilibrium provides a pathway for reversible transamidation without any added catalyst, leading to thermodynamic distributions of amides at room temperature. Lastly, we use different preparation conditions and concentrations of Brønsted acid to access different library distributions, easily controlling the transition between kinetic and thermodynamic regimes. Our results show that maleamic acids can undergo transamidation in mild conditions in a reversible and tunable way, establishing them as a new addition to the toolbox of dynamic combinatorial chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call