Abstract

The purpose of this paper is to assess the impact of timer-based burst assembly algorithms for TCP traffic. We present an analysis for short, medium and long assembly times and investigate segment and flow distribution over the assembled bursts. Further, we also analyze their impact on the congestion window evolution and on the effective throughput achieved. It has been found out that short assembly times are ideally suitable for sources with small congestion windows, allowing for a speed up, while large assembly times yield a lower throughput variation among the individual assembled flows. For long assembly times, the transfer of more segments from the same source is trading off the increase of the burstification delay but no throughput gain is obtained. However, large assembly times smooth out individual flow performance and provide a significant lower variation of throughput. To this end, in this paper, we propose a new adaptive burst assembly algorithm that dynamically assigns flows to different burstifiers based on their instant window size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.