Abstract
Microfluidic temperature gradient focusing (TGF) uses an axial temperature gradient to induce a gradient in electrophoretic flux within a microchannel. When balanced with an opposing fluid flow, charged analytes simultaneously focus and separate according to their electrophoretic mobilities. We present a theoretical and experimental study of dispersion in TGF. We model the system using generalized dispersion analysis that yields a 1-D convection-diffusion equation that contains dispersion terms particular to TGF. We consider analytical solutions for the model under uniform temperature gradient conditions. Using a custom TGF experimental setup, we compare focusing measurements with the theoretical predictions. We find that the theory well represents the focusing behavior for flows within the Taylor-Aris dispersion regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.