Abstract
In binary neutron star mergers, the remnant can be stabilized by differential rotation before it collapses into a black hole. Therefore, the angular momentum transport mechanisms are crucial for predicting the lifetime of the hypermassive neutron star. One such mechanism is the Tayler-Spruit dynamo, and recent simulations have shown that it could grow in proto-neutron stars that formed during supernova explosions. We aim to investigate whether hypermassive neutron stars with high neutrino viscosity could be unstable to the Tayler-Spruit dynamo and study how magnetic fields would evolve in this context. Using a one-zone model based on the result of a 3D GRMHD simulation, we investigate the time evolution of the magnetic fields generated by the Tayler-Spruit dynamo. In addition, we analyze the dynamics of the 3D GRMHD simulation to determine whether the dynamo is present. Our one-zone model predicts that the Tayler-Spruit dynamo can increase the toroidal magnetic field to $ $ G and the dipole field to amplitudes ge 10^ G. The dynamo's growth timescale depends on the initial large-scale magnetic field right after the merger. In the case of a long-lived hypermassive neutron star, an initial magnetic field of ge 10^ G would be enough for the magnetic field to be amplified in a few seconds. However, we show that the resolution of the current GRMHD simulations is insufficient to resolve the Tayler-Spruit dynamo due to high numerical dissipation at small scales. We find that the Tayler-Spruit dynamo could occur in hypermassive neutron stars and shorten their lifetime, which would have consequences on multi-messenger observations.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have