Abstract

Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P < 0.05) increased root and microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P < 0.05) changed by clipping. Clipping significantly (P < 0.05) increased the abundances of labile carbon (C) degrading genes. More importantly, the abundances of recalcitrant C degrading genes were consistently and significantly (P < 0.05) increased by clipping in the last 2 years, which could accelerate recalcitrant C degradation and weaken long-term soil carbon stability. Furthermore, genes involved in nutrient-cycling processes including nitrogen cycling and phosphorus utilization were also significantly increased by clipping. The shifts of microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices.

Highlights

  • The grassland ecosystem is an important terrestrial C pool containing almost 12% of Earth’s organic matter (Schlesinger, 1977), more than 90% of which is stored belowground in the form of roots and soil organic matter (SOM) (Shahzad et al, 2012)

  • The C4 plant biomass was significantly (P = 0.02) higher under clipping than control, but the C3 plant biomass remained unchanged in 2014 (Supplementary Table S1), resulting in a plant community shift toward more C4 plant species

  • In the last 2 years (2013 and 2014), very few genes associated with labile C degradation remained significantly increased under clipping, while most of the genes involved in recalcitrant C degradation, that had originally significantly increased in 2011, were again significantly (P < 0.05) increased under clipping (Supplementary Figure S7). These results suggested that the stimulation of clipping on the genes involved in recalcitrant C degradation was more persistent than genes involved in labile C degradation, and implied that the degradation of recalcitrant C might be triggered as the cumulative effect of annual clipping on microbial communities increased over time

Read more

Summary

Introduction

The grassland ecosystem is an important terrestrial C pool containing almost 12% of Earth’s organic matter (Schlesinger, 1977), more than 90% of which is stored belowground in the form of roots and soil organic matter (SOM) (Shahzad et al, 2012). Another study reported that little variations in microbial composition and diversity were observed under clipping treatment, removal of aboveground plant biomass can increase soil temperature while decreasing C and nutrient pools in an experimental semi-arid grassland (Carey et al, 2015). It is uncertain how plant tissue removal affects N mineralization processes and alters N availability for decomposition processes (Cheng et al, 2010). Long-term monitoring of taxonomic and functional shifts of soil microbial communities in response to annual clipping is necessary for a comprehensive understanding of the effects of plant tissue removal on soil microbial communities

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.