Abstract

One of the fundamental patterns in macroecology is the increase in the number of observed taxa with size of sampled area. For microbes, the shape of this relationship remains less clear. The current study assessed the diversity of aquatic fungi, by the traditional approach based on conidial morphology (captures reproducing aquatic hyphomycetes) and next generation sequencing (NGS; captures other fungi as well), on graded sizes of alder leaves (0.6 to 13.6 cm2). Leaves were submerged in two streams in geographically distant locations: the Oliveira Stream in Portugal and the Boss Brook in Canada. Decay rates of alder leaves and fungal sporulation rates did not differ between streams. Fungal biomass was higher in Boss Brook than in Oliveira Stream, and in both streams almost 100% of the reads belonged to active fungal taxa. In general, larger leaf areas tended to harbour more fungi, but these findings were not consistent between techniques. Morphospecies-based diversity increased with leaf area in Boss Brook, but not in Oliveira Stream; metabarcoding data showed an opposite trend. The higher resolution of metabarcoding resulted in steeper taxa-accumulation curves than morphospecies-based assessments (fungal conidia morphology). Fungal communities assessed by metabarcoding were spatially structured by leaf area in both streams. Metabarcoding promises greater resolution to assess biodiversity patterns in aquatic fungi and may be more accurate for assessing taxa-area relationships and local to global diversity ratios.

Highlights

  • The observed number of taxa almost always increases with sampled area [1, 2], a relationship that has been widely studied for animals and plants [3, 4]

  • Our results provide evidence that fungi display spatial turnover in streams, and that our

  • The most rapid increase of fungal diversity occurred at very small leaf areas, suggesting that the number of co-existing species quickly approaches a plateau (Fig 4)

Read more

Summary

Introduction

The observed number of taxa almost always increases with sampled area [1, 2], a relationship that has been widely studied for animals and plants [3, 4]. The traditional view concerning microbes has long been that “everything is everywhere, but the environment selects” [5]. This hypothesis claims that small organisms (< 2 mm), commonly referred to as microorganisms, have a high potential of dispersal and present cosmopolitan distributions, with little or no evidence of historical or geographical constraints [5,6,7]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.