Abstract

We give a characterization of $\tau$-rigid modules over Auslander algebras in terms of projective dimension of modules. Moreover, we show that for an Auslander algebra $\Lambda$ admitting finite number of non-isomorphic basic tilting $\Lambda$-modules and tilting $\Lambda^{\operatorname{op}}$-modules, if all indecomposable $\tau$-rigid $\Lambda$-modules of projective dimension $2$ are of grade $2$, then $\Lambda$ is $\tau$-tilting finite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.