Abstract

In the last 15 years, advancements in molecular biology have unraveled the proteins that function as taste receptors. There are at least five taste qualities that are consciously perceived, sweet, sour, salty, bitter, and umami. Of these five, sour and salty are mediated by ion channels, whereas the perception of sweet, umami, and bitter tastes is mediated by G protein-coupled receptors (GPCRs). These taste GPCRs belong to the TAS1R and TAS2R gene families. There are other nutrient-binding GPCRs whose taste function is still being studied such as CaSR, GPRC6A, GPR92, or GPR120. It has been suspected for more than a century that the gut can sense the chemical composition of foods. The description of multiple taste GPCRs in gastrointestinal (GI) cells suggests that there are nutrient-sensing mechanisms in the GI tract, oral, gastric, and intestinal mucosa. Oral sensing seems to mainly influence food discrimination and nutrient appetite, while post-oral chemosensors may relate to nutrient utilization and inhibition of appetite. The most common accepted view is that taste GPCRs are present in enteroendocrine cells among others also known as chemosensory cells. These cells express taste receptors and other taste-related genes. Although, functional cells of the GI mucosa that are not enteroendocrine or brush cells such as enterocytes or gastric cells may also hold receptive mechanisms that transduce the presence of certain nutrients in ingested foods and regulate gastric functions. This paper examines the importance of food chemical signals in their association with the neuroendocrine mechanisms they trigger, which are the core for metabolism and appetite regulation.

Highlights

  • Sugars, organic acids, minerals, alkaloids, or amino acids in foods bind to their corresponding taste receptors acting themselves as chemical messengers and inducing one of the known five taste qualities, sweet, sour, salty, bitter, and umami or savory taste, the taste of glutamate [1]

  • Taste receptors appear to inform the brain of the chemical composition of foods and in turn, the brain responds with learned anticipatory responses to maintain body homeostasis prior to nutrient absorption [3]

  • There are other G protein-coupled receptors (GPCRs) nutrient receptors that, have been described in the taste tissue, their taste-specific qualities are still under investigation. They are receptors that can bind to a wide variety of amino acids such as the extracellular calcium-sensing receptor (CaSR), which has been linked to kokumi substances, calcium, and large aromatic amino acids, the GPCR family C subtype 6A (GPCR6A) that binds to basic amino acids, or the G protein-coupled protein 92 (GPR92) that binds to peptone and may be involved in the perception of umami taste [4,21,22,23]

Read more

Summary

Introduction

Organic acids, minerals, alkaloids, or amino acids in foods bind to their corresponding taste receptors acting themselves as chemical messengers and inducing one of the known five taste qualities, sweet, sour, salty, bitter, and umami or savory taste, the taste of glutamate [1]. Introduction Sugars, organic acids, minerals, alkaloids, or amino acids in foods bind to their corresponding taste receptors acting themselves as chemical messengers and inducing one of the known five taste qualities, sweet, sour, salty, bitter, and umami or savory taste, the taste of glutamate [1].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.