Abstract

Recent advances in the field of humanoid robotics increase the complexity of the tasks that such robots can perform. This makes it increasingly difficult and inconvenient to program these tasks manually. Furthermore, humanoid robots, in contrast to industrial robots, should in the distant future behave within a social environment. Therefore, it must be possible to extend the robot's abilities in an easy and natural way. To address these requirements, this work investigates the topic of imitation learning of motor skills. The focus lies on providing a humanoid robot with the ability to learn new bi-manual tasks through the observation of object trajectories. For this, an imitation learning framework is presented, which allows the robot to learn the important elements of an observed movement task by application of probabilistic encoding with Gaussian Mixture Models. The learned information is used to initialize an attractor-based movement generation algorithm that optimizes the reproduced movement towards the fulfillment of additional criteria, such as collision avoidance. Experiments performed with the humanoid robot ASIMO show that the proposed system is suitable for transferring information from a human demonstrator to the robot. These results provide a good starting point for more complex and interactive learning tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.